Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Anders Lennartson,* Theonitsa Kokoli and Mikael Håkansson

Department of Chemistry, Göteborg University, SE-412 96 Göteborg, Sweden

Correspondence e-mail: anle@chem.gu.se

Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.051$
$w R$ factor $=0.157$
Data-to-parameter ratio $=14.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

N, N^{\prime}-Diphenylethylenediamine, an $\mathrm{N}-\mathrm{H} \cdots \pi$ - and $\mathbf{C}-\mathbf{H} \cdots \pi$-bonded network

N, N^{\prime}-Diphenylethylenediamine, $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2}$, forms monoclinic crystals, with a centre of symmetry at the mid-point of the central $\mathrm{C}-\mathrm{C}$ bond. In the crystal structure, the intermolecular interactions are primarily of $\mathrm{N}-\mathrm{H} \cdots \pi$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ character, without any contribution from $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonding. The $\mathrm{N}-\mathrm{H} \cdots \pi$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions, when considered separately, give rise to two sets of layers that, on superposition, generate a network structure.

Comment

There are three crystal structures reported in the literature containing N, N^{\prime}-diphenylethylenediamine ligands, as revealed by a search in the Version 5.26 of the Cambridge Structural Database (Allen, 2002). In all of these cases, the N atoms display tetrahedral geometries and are chirogenic. Crystal structures of compounds displaying stereochemically labile chirogenic atoms are interesting when considering possible candidates for absolute asymmetric synthesis (Vestergren et al., 2003; Lennartson et al., 2005). This, however, requires that the compound crystallizes in one of the Sohncke space groups. In two of the structures, $\left[\mathrm{Ni}(\mathrm{acac}) \mathrm{NO}_{3}(\text { dpheda })_{2}\right]$ (Voutsas, 1995), where acac is acetylacetonate and dpheda is N, N^{\prime}-diphenylethylenediamine, and $\left[\mathrm{Ni}(\mathrm{hfac})_{2}(\mathrm{dpheda})_{2}\right]$ (Voutsas et al., 1995), where hfac is hexafluoroacetylacetonate, the two N atoms in each ligand molecule have the same configuration, whereas the third structure, $\left[\mathrm{Ni}(\text { dpheda })_{2} \mathrm{tfac}^{2}\right] \mathrm{ClO}_{4}$ (Voutsas $e t$ al., 1994), where tfac is $1,1,1$-trifluoroacetylacetonate, is a meso form. We now report the crystal structure of the free ligand N, N^{\prime}-diphenylethylenediamine, (I).

(I)

Since compound (I) (Fig. 1) crystallizes in the centrosymmetric space group $P 2_{1} / c$ with the $\mathrm{C} 7-\mathrm{C}^{\mathrm{i}}$ ethane bond situated on an inversion centre [symmetry code: (i) $1-x,-y$, $-z$], it follows that (I) displays a perfectly staggered conformation in the solid state, with an $\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 7^{\mathrm{i}}-\mathrm{N} 1^{\mathrm{i}}$ torsion angle of 180°. The coordination geometry around the N atoms is perhaps best described as trigonal planar, with $\mathrm{C} 7-\mathrm{N} 1-$

Received 17 March 2005
Accepted 31 March 2005
Online 9 April 2005

Figure 1
ORTEP-3 (Farrugia, 1997) plot of (I), with the atom-numbering scheme. Displacement ellipsoids drawn at the 50% probability level. All H atoms have been omitted. [Symmetry code: (i) $1-x,-y,-z$.]

Figure 2
$\mathrm{N}-\mathrm{H} \cdots \pi$ interactions (dashed lines) viewed along the a axis.
$\mathrm{H} 1, \mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1$ and $\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 1$ angles of 119 (2), 117 (2) and $125.2(2)^{\circ}$, respectively. The molecule does not, in other words, display any element of chirality.

The crystal structure displays two distinct types of intermolecular interactions, $\mathrm{N}-\mathrm{H} \cdots \pi$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions. Interestingly, there are no $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, which gives an indication on the importance of $\mathrm{C}-\mathrm{H} \cdots \pi$ and $\mathrm{N}-$ $\mathrm{H} \cdots \pi$ interactions in the assembly of discrete molecules into crystal structures (Nishio, 2004; Cantrill et al., 2000; Braga et al., 1998; Viswamitra et al., 1993). The $\mathrm{N}-\mathrm{H} \cdots \pi$ interactions depend on the interactions between the NH group and the π electrons in the $\mathrm{C} 3-\mathrm{C} 4$ bond of an adjacent molecule. The $\mathrm{H} 1 \cdots \mathrm{C} 3^{\mathrm{ii}}$ and $\mathrm{H} 1 \cdots \mathrm{C} 4^{\mathrm{ii}}$ [symmetry code: (ii) $1-x, y-\frac{1}{2}$, $\frac{1}{2}-z$] distances are 2.73 (2) and 2.83 (2) \AA, respectively, and the $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{C} 3^{\mathrm{ii}}$ and $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{C} 4{ }^{\mathrm{ii}}$ angles are 170 (2) and 143 (2) ${ }^{\circ}$, respectively. The $\mathrm{N}-\mathrm{H} \cdots \pi$ interactions extend the structure only in the $b c$ plane; there are no $\mathrm{N}-\mathrm{H} \cdots \pi$ interactions in the a-axis direction. If only the $\mathrm{N}-\mathrm{H} \cdots \pi$ interactions are considered infinite layers are formed, where each molecule interacts with four neighbours, as shown in Fig. 2.

The $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (Fig. 3) involve the H3 atom and the $\mathrm{C} 1-\mathrm{C} 6$ bond in an adjacent molecule, with a $\mathrm{H} 3 \cdots \mathrm{C}^{\text {iii }}$ distance of $2.83 \AA$, and a $\mathrm{H} 3 \cdots \mathrm{C} 1^{\mathrm{iii}}$ distance of $2.99 \AA$ [symmetry code: (iii) $2-x, \frac{1}{2}+y, \frac{1}{2}-z$]. The $\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{C} 6^{\text {iii }}$ and $\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{C} 1$ angles are 167 and 144°, respectively. In total, every molecule is involved in four interactions of this kind. Like the $\mathrm{N}-\mathrm{H} \cdots \pi$ interactions, the $\mathrm{C}-\mathrm{H} \cdots \pi$-interactions propagate in two dimensions, giving rise to layers. These layers are different from those formed by the $\mathrm{N}-\mathrm{H} \cdots \pi$ interactions, and are extended in the $(20 \overline{4})$ set of planes.

Figure 3
$\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (dashed lines) viewed along the a axis.

Figure 4
Intersection between $\mathrm{N}-\mathrm{H} \cdots \pi$ bonded layers (horizontal) and $\mathrm{C}-$ $\mathrm{H} \cdots \pi$-bonded layers viewed along the b axis.

The two different sets of interactions thus give rise to two different sets of layers intersecting at an angle of 37° (Fig. 4). Since each molecule is a part of both kinds of layers, a threedimensional network results, with no overall layered structure.

Experimental

Commercial (E. Merck) N, N^{\prime}-diphenylethylenediamine (0.50 g) was heated with hexane (3 ml) to gentle reflux, and toluene was added dropwise until dissolution. The clear solution was slowly allowed to reach ambient temperature, whereupon large colourless plates formed. Samples for crystallographic analysis were cleaved from larger crystals.

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2}$
$M_{r}=212.29$
Monoclinic, $P 2_{1} / c$
$a=5.883$ (2) A
$b=8.022$ (3) \AA
$c=12.387$ (5) A
$\beta=90.185(15)^{\circ}$
$V=584.6(4) \AA^{3}$
$Z=2$

Data collection

Rigaku R-AXIS IIc image-plate system diffractometer φ scans
Absorption correction: none
3912 measured reflections 1116 independent reflections
$D_{x}=1.206 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3912
reflections
$\theta=3.0-26.0^{\circ}$
$\mu=0.07 \mathrm{~mm}^{-1}$
$T=292$ (2) K
Plate, white
$0.40 \times 0.25 \times 0.25 \mathrm{~mm}$

```
848 reflections with \(I>2 \sigma(I)\)
\(R_{\text {int }}=0.055\)
\(\theta_{\text {max }}=26.0^{\circ}\)
\(h=-7 \rightarrow 7\)
\(k=-9 \rightarrow 9\)
\(l=-15 \rightarrow 15\)
```


organic papers

Refinement

Refinement on F^{2}	$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0963 P)^{2}\right.$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.051$	$+0.025 P]$
$w R\left(F^{2}\right)=0.157$	where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$
$S=1.00$	$(\Delta / \sigma)_{\max }=0.001$
1116 reflections	$\Delta \rho_{\max }=0.15 \mathrm{e} \AA^{-3}$
77 parameters	$\Delta \rho_{\min }=-0.11 \mathrm{e}^{-3}$
H atoms treated by a mixture of	
\quad independent and constrained	
\quad refinement	

Table 1
Selected geometric parameters (${ }_{\mathrm{A}} \mathrm{O}^{\circ}$).

$\mathrm{C} 1-\mathrm{N} 1$	$1.373(2)$	$\mathrm{C} 5-\mathrm{C} 4$	$1.378(3)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.390(2)$	$\mathrm{C} 4-\mathrm{C} 3$	$1.367(3)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.392(2)$	$\mathrm{N} 1-\mathrm{C} 7$	$1.441(2)$
$\mathrm{C} 6-\mathrm{C} 5$	$1.359(2)$	$\mathrm{C} 7-\mathrm{C} 7^{\mathrm{i}}$	$1.510(3)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.375(2)$		
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$122.80(14)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7$	$125.19(16)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6$	$119.24(15)$		

Symmetry code: (i) $1-x,-y,-z$.

All H atoms except H 1 were included in calculated positions ($\mathrm{C}-$ $\mathrm{H}=0.96-0.97 \AA$) and refined using a riding model, with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$. Atom H 1 was located in a difference map and allowed to refine without constraints.

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine
structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Financial support from the Swedish Research Council (VR) is gratefully acknowledged.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Altomare, A., Cascarano, G., Giacovazzo, C. \& Gualardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Braga, D., Grepioni, F. \& Tedesco, E. (1998). Organometallics, 17, 2669-2672.
Cantrill, S. J., Preece, J. A., Stoddart, J. F., Wang, Z. H., White, A. J. P. \& Williams, D. J. (2000). Tetrahedron, 56, 6675-6681.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Lennartson, A., Vestergren, M. \& Håkansson, M. (2005). Chem. Eur. J. 11, 1757-1762.
Nishio, M. (2004). CrystEngComm, 6, 130-158.
Rigaku (2000). CrystalClear. Version 1.3. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (1997). SHELXL97. University of Göttingen. Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Vestergren, M., Eriksson, J. \& Håkansson, M. (2003). Chem. Eur. J. 9, 46784686.

Viswamitra, M. A., Radhakrishnan, R., Bandekar, J. \& Desiraju, G. R. (1993). J. Am. Chem. Soc. 115, 4868-4869.

Voutsas, G. P. (1995). Z. Kristallogr. 210, 31-33.
Voutsas, G. P., Keramidas, K. G., Tsiamis, C. \& Themeli, M. (1994). Z. Kristallogr. 209, 965-968.
Voutsas, G., Keramidas, K., Tsiamis, C. \& Themeli, M. (1995). Z. Kristallogr. 210, 107-110.

